منابع مشابه
Finite Rank Perturbations, Scattering Matrices and Inverse Problems
In this paper the scattering matrix of a scattering system consisting of two selfadjoint operators with finite dimensional resolvent difference is expressed in terms of a matrix Nevanlinna function. The problem is embedded into an extension theoretic framework and the theory of boundary triplets and associated Weyl functions for (in general nondensely defined) symmetric operators is applied. Th...
متن کاملInverse Young inequality in quaternion matrices
Inverse Young inequality asserts that if $nu >1$, then $|zw|ge nu|z|^{frac{1}{nu}}+(1-nu)|w|^{frac{1}{1-nu}}$, for all complex numbers $z$ and $w$, and equality holds if and only if $|z|^{frac{1}{nu}}=|w|^{frac{1}{1-nu}}$. In this paper the complex representation of quaternion matrices is applied to establish the inverse Young inequality for matrices of quaternions. Moreover, a necessary and ...
متن کاملZ{matrices and Inverse Z{matrices
We consider Z{matrices and inverse Z{matrices, i.e. those nonsingular matrices, whose inverse is a Z{matrix. Recently Fiedler and Markham introduced a classii-cation of Z{matrices. This classiication directly leads to a classiication of inverse Z{matrices. Among all classes of Z{matrices and inverse Z{matrices the classes of M{matrices, N 0 {matrices, F 0 {matrices and inverse M{matrices, inver...
متن کاملNon-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملM-functions and Inverse Spectral Analysis for Finite and Semi-infinite Jacobi Matrices
We study inverse spectral analysis for finite and semi-infinite Jacobi matrices H. Our results include a new proof of the central result of the inverse theory (that the spectral measure determines H). We prove an extension of Hochstadt’s theorem (who proved the result in the case n = N) that n eigenvalues of an N ×N Jacobi matrix, H, can replace the first n matrix elements in determining H uniq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1997
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181071866